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Abstract: Consideration is given to the nonstationary analogue of M/M/1 queueing model in
which the service happens only in batches of size 2, with the arrival rate λ(t) and the service
rate µ(t). One proposes a new and simple method for the study of the queue-length process.
The main probability characteristics of the queue-length process are computed. A numerical example
is provided.
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1. Introduction

Non-stationary Markovian queueing models have been the subject of extensive research for the
past few decades. It is well-known that the direct computation of time-dependent characteristics for
arbitrary (in)homogeneous continuous-time Markov chains, which show up in the analysis of various
queueing models, is a difficult problem. Thus, usually the alternative way is taken: one resorts to
different types of approximations. One can find an overview of the approaches for the performance
evaluation of time-dependent queueing systems up to 2016 in [1]. The papers [2–4] are devoted to
the construction of the main performance characteristics and papers [5–8] deal with the estimation of
the convergence rate and approximations. The general framework for the study of time-dependent
queueing system systems is described in detail in the recent paper [8]. It consists of several steps,
among which the most important one is the estimation of the upper bounds for the rate of convergence
to the limiting regime. Having such bound allows one to find (compute) the time instant, say t∗,
starting from which probabilistic properties of X(t) do not depend on the value of X(0) (assuming
that the process starts at time t = 0). Thus, for example, if the transition intensities are periodic
(say, 1-time-periodic), one can truncate the process on the interval [t∗, t∗ + 1] and solve the forward
Kolmogorov system of differential equations on this interval with X(0) = 0. In such a way, one
may build approximations for any limiting probability characteristics of X(t) and estimate stability
(perturbation) bounds. For the details regarding the stability bounds, one can refer to [9–15] and
references therein. If the reduced intensity matrix of a Markov chain (see the next section for the
definition) is essentially positive, then the approach for the computation of the upper bounds on the
rate of convergence l1 metric is available: one may use the method of logarithmic norm of a linear
operator function and use the bounds for the Cauchy operator of the (reduced) forward Kolmogorov
system (see [6,7]). Note that such bounds may be sharp if the difference between the two initial
conditions is nonnegative.
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However, the method of the logarithmic norm is not always applicable, i.e., there are Markov
chains with such transition intensities, for which it does not yield upper bounds for the rate
of convergence. Such a Markov chain is the topic of this paper. Specifically, one considers an
inhomogeneous analogue of the classical M/M/1 queue, in which the service happens only in
batches of size 2. For this queue, we propose the simple new method, based on the direct application
of differential inequalities, for the estimation of the queue-size probability characteristics.

2. Model Description and Basic Transformations

Consideration is given to the Markov chain X(t) being the queue-length (including a customer
in server) at time t in the Mt/Mt/1 queuing system with batch service (only). It is assumed that
customers enter the system only by one and the arrival intensity does not depend on the number of
customers in the system, but depends on time, and is equal to λ(t). Customers can be served only in
batches of size 2 and the service intensity does not depend on the number of customers in the system,
but depends on time, and is equal to µ(t). The transition diagram for X(t) is given in Figure 1.

0 1 2 3 4

λ(t) λ(t) λ(t) λ(t)

µ(t) µ(t) µ(t)

Figure 1. Transition diagram for the Markov chain X(t).

Denote by pij(s, t) = Pr
{

X(t) = j
/

X(s) = i
}

, i, j ≥ 0, 0 ≤ s ≤ t the transition probabilities
and by pi(t) = P {X(t) = i}—the probability that X(t) is in state i at time t. Let p(t) =

(p0(t), p1(t), . . . , pS(t))
T be probability distribution vector at instant t. Throughout the paper, it is

assumed that

Pr (X (t + h) = j|X (t) = i) =



λ (t) h + αij (t, h) if j = i + 1, i ≥ 0,

µ (t) h + αij (t, h) if j = i− 2, i ≥ 2,

1− λ(t)h + αi (t, h) if j = i, 0 ≤ i ≤ 1,

1− (λ(t) + µ(t))h + αi (t, h) if j = i, i ≥ 2,

αij (t, h) otherwise,

(1)

where all αij(t, h) are o(h) and αi(t, h) are o(h) uniformly in i for any t ≥ 0. In addition, it is assumed
that the intensity functions λ(t) and µ(t) are nonnegative, continuous and bounded on the interval
[0, ∞), λ(t) + µ(t) ≤ L < ∞ for any t ≥ 0. Then, the probabilistic dynamics of the process is
represented by the forward Kolmogorov system of differential equations:

d
dt

p(t) = A(t)p(t), (2)

where A(t) is the transposed intensity matrix of the process, having the following form:

A(t) =



−λ(t) 0 µ(t) 0 0 · · ·
λ(t) −λ(t) 0 µ(t) 0 · · ·

0 λ(t) − (λ(t) + µ(t)) 0 µ(t) · · ·
0 0 λ(t) − (λ(t) + µ(t)) 0 · · ·
. . . . . . . . . . . . . . . . . .

0 0 0 0 0 · · ·
· · · · · · · · · · · · · · · · · ·


. (3)
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Throughout the paper, by ‖ · ‖, we denote the l1-norm, i.e., ‖p(t)‖ = ∑k≥0 |pk(t)|, and ‖A(t)‖ =
supj≥1 ∑i≥1 |aij|. Let Ω be a set all stochastic vectors, i.e., l1 vectors with non-negative coordinates and
unit norm. Hence, we have ‖A(t)‖ = 2 supk≥1 |qkk(t)| ≤ 2L for almost all t ≥ 0. Hence, the operator
function A(t) from l1 into itself is bounded and continuous for all t ≥ 0 and thus Label (2) is a
differential equation in the space l1 with bounded operator, which has a unique solution for any
arbitrary initial condition (see [16]).

The method that is being proposed in this paper relies on the following transformation (referring
to [6]) of the intensity matrix A(t). Since p0(t) = 1−∑i≥1 pi(t) due to the normalization condition,
one can rewrite the system (2) as follows:

d
dt

z(t) = B(t)z(t) + f(t), (4)

where
f(t) = (λ(t), 0, 0, . . . )T , z(t) = (p1(t), p2(t), . . . )T ,

B(t) =



−2 · λ(t) −λ(t) µ(t)− λ(t) −λ(t) · · ·
λ(t) − (λ(t) + µ(t)) 0 µ(t) · · ·

0 λ(t) − (λ(t) + µ(t)) 0 · · ·
. . . . . . . . . . . . . . .

0 0 0 0 · · ·
· · · · · · · · · · · · · · ·


. (5)

Note that the bounds on the rate of convergence of the solutions of the system of differential
equations

d
dt

y(t) = B(t)y(t) (6)

correspond to the same bounds of X(t).
Denote by T the upper triangular matrix of ones i.e., tij = 1 for j ≥ i and 0, otherwise. Then,

T−1 =



1 −1 0 0 . . .

0 1 −1 0 . . .

0 0 1 −1 . . .

0 0 0 1 . . .
...

...
...

...
. . .


.

Put u(t) = Ty(t). Then, we have

d
dt

u(t) = B∗(t)u(t), (7)

where

B∗(t) =



−λ(t) −µ(t) µ(t) 0 0 0 · · ·
λ(t) − (λ(t) + µ(t)) 0 µ(t) 0 0 · · ·

0 λ(t) − (λ(t) + µ(t)) 0 µ(t) 0 · · ·
0 0 λ(t) − (λ(t) + µ(t)) 0 µ(t) · · ·
0 0 0 λ(t) − (λ(t) + µ(t)) 0 · · ·
. . . . . . . . . . . . . . . . . . . . .

· · · · · · · · · · · · · · · · · · · · ·


.
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Such transformation has been applied in a series of papers for general Markovian queueing
models (see, for example, [7]). As it was mentioned above, the analysis of the rate of convergence
to the limiting regime (a detailed description of this approach and its generalization can be found,
for example, in [8,17,18]) was based on the logarithmic norm of an operator function from l1 to itself,
which can be computed by the simple formula:

γ(B(t)) = sup
j≥1

(
bjj(t) + ∑

i≥1,i 6=j
|bij(t)|

)
. (8)

For the considered Markov chain X(t), the method based on the logarithmic norm no longer
applied. This is due to the fact that all column sums in B∗(t) are equal to zero. In the next section, one
outlines another approach, which is based on the direct applications of the differential inequalities. It
was firstly considered for a finite Markovian queueing model in [19].

3. Bounds on the Rate of Convergence

Let {di, i ≥ 0} be a sequence such that infi≥0 |di| = d > 0. Denote by D = diag (d0, d1, d2, . . . ) the
diagonal matrix. By putting w(t) = Du(t) from (7), one obtains

d
dt

w(t) = B∗∗(t)w(t), (9)

where the matrix B∗∗(t) = (b∗∗(t))∞
i,j=1 = DB∗(t)D−1 has the following form:

B∗∗(t) =



−λ(t) −µ(t) · d1
d2

µ(t) · d1
d3

0 0 · · ·
λ(t) · d2

d1
− (λ(t) + µ(t)) 0 µ(t) · d2

d4
0 · · ·

0 λ(t) · d3
d2

− (λ(t) + µ(t)) 0 µ(t) · d3
d5
· · ·

0 0 λ(t) · d4
d3

− (λ(t) + µ(t)) 0 · · ·
. . . . . . . . . . . . . . . . . .

· · · · · · · · · · · · · · · · · ·


.

Let u(t) be an arbitrary solution of (7). Consider an interval (t1, t2) with fixed signs of coordinates
of u(t). Let now signs of the entries di coincide with signs of the corresponding coordinates ui(t) of
u(t). Then, diui(t) > 0 for all i ≥ 1 on the time interval (t1, t2) and hence ∑∞

k=1 dkuk(t) = ‖w(t)‖ can
be considered as the corresponding norm. Put αj(t) = −∑i b∗∗ij (t) and assume that

αj(t) ≥ αD(t), j ≥ 1. (10)

Consider now the system (9) on the interval (t1, t2). Then, the following bound holds:

d
dt
‖w(t)‖ = d

dt

(
∑
k≥1

wk(t)

)
= ∑

j≥1
∑
i≥1

b∗∗ij (t)wj(t) ≤ −αD(t)‖w(t)‖. (11)

If one puts α∗(t) = inf αD(t), where the infimum is taken over all intervals with different
combinations of coordinate signs of the solution, then for any such interval one has in the own

corresponding norm, the inequality ‖w(t)‖ ≤ e−
∫ t

s α∗(τ) dτ‖w(s)‖.
Let firstly all coordinates of u(t) be positive. Put d1 = 1, d2 = 1/δ, d3 = δ and dk+1 = δdk,

for k ≥ 3, where δ > 1. Then, one has:

α1
1(t) = λ(t)

(
1− δ−1

)
,
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α1
2(t) = µ(t) (1 + δ)− λ(t)

(
δ2 − 1

)
,

α1
3(t) = µ(t)

(
1− δ−1

)
− λ(t) (δ− 1) ,

α1
4(t) = µ(t)

(
1− δ−3

)
− λ(t) (δ− 1) ,

α1
k(t) = µ(t)

(
1− δ−2

)
− λ(t) (δ− 1) , k ≥ 5.

Therefore, one can take on the corresponding interval α1
D(t) = min1≤i≤4 α1

i (t) and d1 = infi |di| =
δ−1.

Let now u1(t) < 0 and uk(t) > 0 for k ≥ 1. In this case, we put d1 = −1, d2 = δ and dk+1 = δdk,
for k ≥ 2, for the same δ > 1. Then, one has:

α2
1(t) = λ(t) (1 + δ) ,

α2
2(t) = µ(t)

(
1− δ−1

)
− λ(t) (δ− 1) ,

α2
3(t) = µ(t)

(
1 + δ−2

)
− λ(t) (δ− 1) ,

α2
k(t) = µ(t)

(
1− δ−2

)
− λ(t) (δ− 1) , k ≥ 4.

Therefore, one can take on the corresponding interval α2
D(t) = min1≤i≤3 α2

i (t) and d2 = infi |di| =
1. Moreover, it can be noted that, in any other case, a number of negative elements will be added to the
column sums in (10). Hence, all values of αk(t) in the other situations can only increase, and therefore
the corresponding values of αD(t) for the same dk will be even greater.

Finally, if one takes α∗(t) = inf αD(t), where the infimum is taken over all intervals with different
combinations of coordinate signs of the solution, then the following bounds hold:

α∗(t) ≥ min
[
λ(t)

(
1− δ−1

)
, µ(t) (1 + δ)−

λ(t)
(

δ2 − 1
)

, µ(t)
(

1− δ−1
)
− λ(t) (δ− 1)

]
, (12)

and the corresponding ‘absolute infimum’

d∗ = min
(

d1, d2
)
= δ−1. (13)

By applying the comparison of norms, as it was done in [7], one obtains the following theorem.

Theorem 1. Let ∫ ∞

0
α∗(t) dt = +∞ (14)

for some δ > 1. Then, X(t) is weakly ergodic and the following bounds on the rate of convergence hold:

‖u(t)‖ ≤ δe−
∫ t

0 α∗(τ) dτ‖w(0)‖, (15)

‖p∗(t)− p∗∗(t)‖ ≤ 4δe−
∫ t

0 α∗(τ) dτ‖w(0)‖, (16)

for any initial conditions.

Note that the inequality W = infk≥1
dk
k > 0 holds for both sequences. It implies an existence

of the limiting mean for the process and the corresponding bounds on the rate of convergence
(see, for example, [6,7]).
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Let the process X(t) be homogeneous i.e., let λ(t) = λ and µ(t) = µ be positive numbers.

Then, (14) is equivalent to α∗ > 0 and this is equivalent to 0 < λ < µ. Put δ =
√

µ
λ . Hence,

α∗0 = min

[(√
µ−
√

λ
)2

, λ

(
1−

√
λ

µ

)]
, (17)

and the following is the corollary to Theorem 1.

Corollary 1. Let X(t) be the queue-length process in M/M/1 queue with service in batches of size 2. Let 0 <

λ < µ. Then, X(t) is ergodic and the following bounds hold:

‖u(t)‖ ≤ δe−α∗0 t‖w(0)‖, (18)

and
‖p∗(t)− π‖ ≤ 4δe−α∗t‖w(0)‖, (19)

for any initial condition X(0).

Note that the inequality W = infk≥1
dk
k > 0 implies an existence of the constant limiting mean for

the process and the corresponding bounds on the rate of convergence.

4. Numerical Example

There exists a number of investigations of queueing models with service in batches (or group
services) (see, for example, [20,21]). Consider one example of such a queueing model with periodic
arrival and service rates. We will be interested in the following quantities: pi(t) the probability that the
total number of customers in the system at time t is i and the mean number E(t, k) = E(X(t)|X(0) = k)
of customers in the system at time t, provided that initially (at instant t = 0), there were k customers in
the system.

Let λ(t) = 2 + sin 2πt and µ(t) = 4 − cos 2πt. Put δ = 11
10 . Then,

∫ 1
0 α∗(t) dt ≥ 1

22 > 0
and the assumptions of Theorem 1 are fulfilled. Hence, X(t) is exponentially weakly ergodic ( i.e.,
limt→∞ ‖p∗(t)− p∗∗(t)‖ → 0 for any initial conditions p∗(0) and p∗∗(0), where p∗(t) and p∗∗(t) are
the solutions of (2).) and has the 1-periodic limiting mean (A Markov chain has the limiting mean
m(t), if limt→∞ (m(t)− E(t, k)) = 0 for any k.) m(t). Now, applying the known truncation technique
(See the detailed discussion and bounds in [22]), one can compute all probability characteristics
of the queue-length process X(t). The corresponding graphs are shown in Figures 2–9. To ensure
that the truncation error is less than 10−3, one can truncate the process X(t) at the level N = 100.
Then, one can compute any probability characteristic using the “extreme” initial conditions X(0) = 0
and X(0) = N = 100. Inequality (16) gives the corresponding (very rough) upper bounds on the
rate of convergence for the state probabilities and for the mean number of customers in the system.
Therefore, one can compute all characteristics on the intervals [0, t∗] and [t∗, t∗ + 1], and obtain the
limiting state probabilities and the limiting mean with error less 2× 10−3. In Figures 2–9 below, it can
be seen that in fact it suffices to set t∗ = 28. Figures 2, 4, 6 and 8 show the mean number of customers
in the system and the probabilities p0(t), p1(t) and p2(t) converge to their limiting values. One can
explicitly see how they approach the time t∗, starting from which the characteristics do not longer
depend on the initial conditions. Other figures show their approximate limiting values.
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Figure 2. Example. The mean E(t, 0) and E(t, 100) for t ∈ [0, 28], this figure shows the rate
of convergence.
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Figure 3. Example. The mean E(t, 0) and E(t, 100) for t ∈ [28, 29], this figure shows approximation of
the limiting mean.
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Figure 4. Example. Probability of the empty queue p0(t) for t ∈ [0, 28] and initial conditions X(0) = 0
and X(0) = 100, this figure shows the rate of convergence.
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Figure 5. Example. Probability of the empty queue p0(t) for t ∈ [28, 29] and initial conditions X(0) = 0
and X(0) = 100, this figure shows approximation of the limiting probability p0(t).
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Figure 6. Example. Probability p1(t) for t ∈ [0, 28] and initial conditions X(0) = 0 and X(0) = 100,
this figure shows the rate of convergence.
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Figure 7. Example. Probability p1(t) for t ∈ [28, 29] and initial conditions X(0) = 0 and X(0) = 100,
this figure shows approximation of the limiting probability p1(t).
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Figure 8. Example. Probability p2(t) for t ∈ [0, 28] and initial conditions X(0) = 0 and X(0) = 100,
this figure shows the rate of convergence.
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Figure 9. Example. Probability p2(t) for t ∈ [28, 29] and initial conditions X(0) = 0 and X(0) = 100,
this figure shows approximation of the limiting probability p2(t).

5. Conclusions

In the paper, some estimates of the rate of convergence and the corresponding approach were
discussed for an inhomogeneous countable state continuous-time Markov chain. This chain is
considered as the queue-length process of a simple nonstationary model of a queue with single
arrivals and batch service (only in batches of size 2). The applied approach allows for studying new
classes of the continuous-time Markov chain such that the corresponding reduced intensity matrix is
not essentially nonnegative.
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